Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiu-Zhi Xu, Mei-Jin Lin, Jun-Dong Wang,* Nai-Sheng Chen and Jin-Ling Huang

Department of Chemistry, University of Fuzhou, Fuzhou 350002, People's Republic of China, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou 350002, People's Republic of China

Correspondence e-mail: wangjd@fzu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.117$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[(1,3-Dioxo-2,3-dihydro-1H-isoindol-2-yl)methyl]phthalonitrile

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$, the phthalonitrile group and the isoindole-1,3-dione group lie in approximately orthogonal planes and exhibit a dihedral angle of 92.76 (8) ${ }^{\circ}$. Partial face-to-face overlap is observed between the two groups. In addition, the crystal packing is stabilized by C $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions.

Comment

The title compound, (I), is a precursor for the synthesis of amphiphilic phthalocyanine, which is utilized in the photodynamic therapy (PDT) of tumors (Huang et al., 2000). After phthalocyanine is formed, the phthalimide is easily converted to an amine, which is believed to have a better interaction with cell tissues. In the structure of a similar precursor (Zhu et al., 2005), the two groups are connected by a flexible butoxy chain. The difference between the earlier structure and (I) is that there is no O atom linked to the phthalocyanine ring, and we are investigating if this O atom will or will not influence the yield of active ${ }^{1} \mathrm{O}_{2}$ in PDT (Kobayashi et al., 2003).

(I)

The molecular structure of (I) is shown in Fig. 1. The cyanogroup $\mathrm{N} 1-\mathrm{C} 7$ [1.130 (3) \AA] and $\mathrm{N} 2-\mathrm{C} 8$ bonds $[1.137$ (3) \AA] are short enough to indicate their triple-bond character, and agree with the values reported by Zhu et al. (2005). The C1 $\mathrm{C} 7[1.436$ (3) \AA] and $\mathrm{C} 2-\mathrm{C} 8[1.435$ (3) \AA] bond distances are comparable to the mean value in phthalonitrile, 1.443 (8) \AA, reported by Allen et al. (1987). The benzene ring of the phthalonitrile group and the isoindole ring system are essentially perpendicular to each other, with an angle of 92.76 (8) ${ }^{\circ}$.

In the crystal packing, the molecules are stacked along the short a axis with weak $\pi-\pi$ interactions due to the partial overlap of the $\mathrm{C} 1-\mathrm{C} 6$ benzene rings and the isoindole ring systems, with perpendicular distances of 3.556 and $3.150 \AA$,

Received 23 May 2005 Accepted 31 August 2005 Online 7 September 2005
respectively. In addition, the molecular packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Table 1).

Experimental

4-Methylphthalic anhydride ($50 \mathrm{~g}, 308 \mathrm{mmol}$) and urea (18.5 g , 308 mmol) were mixed and heated to 433 K ; the mixture melted then solidified. The solid was washed with water and vacuum dried at 353 K to give 4-methylphthalimide (yield 87%, 43.5 g ; m.p. $470.8-$ 471.4 K). All of the 4-methylphthalimide obtained was suspended in methanol (800 ml) and stirred for 5-7 days at room temperature while ammonia gas was pumped into the vessel. As the reaction progressed, the suspension dissolved and then a new suspension formed. After filtering and drying at $343 \mathrm{~K}, 4$-methylphthalic diamide was obtained (yield $30 \%, 12 \mathrm{~g}$; m.p. 455.4-455.6 K). 4-Methylphthalic diamide ($10 \mathrm{~g}, 56.1 \mathrm{mmol}$) was suspended in pyridine (150 ml) and $\mathrm{POCl}_{3}(13 \mathrm{ml}, 142 \mathrm{mmol})$ was added dropwise at $276-278 \mathrm{~K}$. The mixture was stirred at room temperature for 3 h and then poured into ice water; the precipitate was filtered off, washed with water and dried at 353 K , and 4-methylphthalonitrile was obtained (yield 60%, 4.6 g ; m.p. $391.5-391.6 \mathrm{~K}$). This was suspended in $\mathrm{CCl}_{4}(70 \mathrm{ml})$, and then N bromosuccimide ($5.8 \mathrm{~g}, 32.6 \mathrm{mmol}$) and benzoyl peroxide ($0.1-0.2 \mathrm{~g}$) were added. The suspension was refluxed for 24 h , and then cooled to room temperature and filtered; the CCl_{4} was evaporated and crude 4 bromomethylphthalonitrile (3.5 g) was obtained. The crude 4 bromomethylphthalonitrile ($3.5 \mathrm{~g}, 15.8 \mathrm{mmol}$), phthalimide $(2.4 \mathrm{~g}$, $16.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{~g}, 36.2 \mathrm{mmol})$ were added to N, N dimethylformamide (60 ml), and then stirred at 353 K for 12 h . The reaction mixture was poured into ice water $(800 \mathrm{ml})$, and the precipitate was separated by centrifugation, washed with water and vacuum dried at 353 K , resulting in crude (I) (1.7 g). The crude (I) was washed with $\mathrm{CH}_{3} \mathrm{OH}$ and recrystallized from tetrahydrofuran and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ repeatedly; colorless needle-shaped crystals of (I) were obtained (m.p. 550-551 K). MS ($\mathrm{m} / \mathrm{z}, \%$): 287 ($\mathrm{M}^{+}, 100$); IR (KBr , $\left.\mathrm{cm}^{-1}\right): 2229(\mathrm{C}-\mathrm{N}), 3069(\mathrm{Ar}-\mathrm{H}), 1706(\mathrm{C}-\mathrm{O}), 1776,1420\left(-\mathrm{CH}_{2}-\right)$, 1390, 1112 ($\mathrm{N}-\mathrm{H}$), 951 (C-H), 724; UV-vis: 227.41, 294.02 nm $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 235.04,284.18,293.95 \mathrm{~nm}(\mathrm{THF}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $4.919(s, 2 H), 7.910(b r, 5 H), 8.115(d, 1 \mathrm{H}), 8.183(s, 1 \mathrm{H})$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=287.27$
Monoclinic, $P 2_{\mathrm{h}} / c$
$a=4.9331(3) \mathrm{A}$
$b=26.2490(13) \AA$
$c=10.4901(6) \AA$
$\beta=93.0930(13)^{\circ}$
$V=1356.37(13) \AA^{\circ}$
$Z=4$
$D_{x}=1.407 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6576 reflections
$\theta=6.1-54.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Needle, colorless
$0.70 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID	$R_{\text {int }}=0.044$
\quad diffractometer	$\theta_{\max }=27.5^{\circ}$
ω scans	$h=0 \rightarrow 6$
11806 measured reflections	$k=0 \rightarrow 34$
3107 independent reflections	$l=-13 \rightarrow 13$
1558 reflections with $I>2 \sigma(I)$	

Figure 1
The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.117$
$S=1.00$
3107 reflections
235 parameters

All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.042 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.91(2)$	$2.47(2)$	$3.275(3)$	$148(2)$
$\mathrm{C} 6-\mathrm{H} 3 \cdots \mathrm{~N}^{2 i}$	$0.95(2)$	$2.60(2)$	$3.280(3)$	$129(2)$
$\mathrm{C} 15-\mathrm{H} 9 \cdots \mathrm{O}^{\mathrm{iii}}$	0.97 (2)	2.44 (2)	$3.378(3)$	$161(2)$
Sy				

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $-x,-y+1,-z+1$.
All H atoms were located in a difference Fourier map and refined isotropically. The C-H distances lie in the range 0.89 (2)-1.01 (3) \AA.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

This work was supported by the Science Foundation of Fujian Province (No. E0310007) and the Science and Technology Developing Foundation of Fuzhou University (No. 2004-XQ-10).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2. pp. S1-19.

Huang, J. L., Chen, N. S., Huang, J. D., Liu, E. S., Xue, J. P., Yang, S. L., Huang, Z. Q. \& Sun, J. C. (2000). Sci China Ser. B, 30, 481-488.

Kobayashi, N., Ogata, H., Nonaka, N. \& Luk'yanets, E. A. (2003). Chem. Eur. J. 9, 5123-5134.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Rigaku (1998). RAPID-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhu, X.-L., Lin, M.-J., Wang, J.-D., Chen, N.-S. \& Huang, J.-L. (2005). Acta Cryst. E61, o1214-o1215.

